Abstract

Recently, increasing attention has been concentrated on negative permittivity with the development of the emerging metamaterials composed of periodic array structures. However, taking facile preparation into consideration, it is important to achieve negative permittivity behavior based on materials’ intrinsic properties rather than their artificially periodic structures. In this paper, we proposed to fabricate the percolating composites with copper dispersed in epoxy (EP) resin by a polymerization method to realize the negative permittivity behavior. When Cu content in the composites reached to 80 wt%, the conductivity abruptly went up by three orders of magnitudes, suggesting a percolation behavior. Below the percolation threshold, the conductivity spectra conform to Jonscher’s power law; when the Cu/EP composites reached to percolating state, the conductivity gradually reduced in high frequency region due to the skin effect. It is indicated that the conductive mechanism changed from hopping conduction to electron conduction. In addition, the permittivity did not increase monotonously with the increase of Cu content in the vicinity of percolation threshold, due to the presence of leakage current. Meanwhile, the negative permittivity conforming to Drude model was observed above the percolation threshold. Further investigation revealed that there was a constitutive relationship between the permittivity and the reactance. When conductive fillers are slightly above the percolation threshold, the inductive characteristic derived from conductive percolating network leads to the negative permittivity. Such epsilon-negative materials can potentially be applied in novel electrical devices, such as high-power microwave filters, stacked capacitors, negative capacitance field effect transistors and coil-free resonators. In addition, the design strategy based on percolating composites provides an approach to epsilon-negative materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.