Abstract

ABSTRACTActivated carbon fibers (ACFs) were heat-treated at temperatures above 2000°C to study both the effect of heat treatment on the order development in ACFs and the effect of granularity on the transport properties of granular materials in general. The electrical conductivity σ(T) and Magnetoresistance (MR) were measured as a function of temperature for ACFs Made of two different precursors and heat-treated at different temperatures. While the field dependence of the observed negative MR could be fit to the two-dimensional weak localization (2D WL) theory at each measurement temperature, σ(T) showed only a weak temperature dependence, inconsistent with the ln (T) dependence predicted by the same theory. Even More interesting is the observation of a negative MR, which is a quantum-Mechanical phenomenon, near room temperature. It is thought that the grain boundaries might be responsible for such deviations from the standard 2D WL theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.