Abstract

The ground state of nanowires of single-crystalline pyrochlore Y_{2}Ir_{2}O_{7} is a density wave. The application of a transverse magnetic field increases the threshold electric field for the collective depinning of the density wave state at a low temperature, leading to colossal magnetoresistance for voltages around the depinning threshold. This is in striking contrast to the case where even a vanishingly small longitudinal magnetic field sharply reduces the depinning threshold voltage, resulting in negative magnetoresistance. Ruling out several other possibilities, we argue that this phenomenon is likely to be a consequence of the chiral anomaly in the gapped out Weyl semimetal phase in Y_{2}Ir_{2}O_{7}.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.