Abstract
We define negative K-groups for exact categories and for ``derived categories'' in the framework of Frobenius pairs, generalizing definitions of Bass, Karoubi, Carter, Pedersen-Weibel and Thomason. We prove localization and vanishing theorems for these groups. Devissage (for noetherian abelian categories), additivity, and resolution hold. We show that the first negative K-group of an abelian category vanishes, and that, in general, negative K-groups of a noetherian abelian category vanish. Our methods yield an explicit non-connective delooping of the K-theory of exact categories and chain complexes, generalizing constructions of Wagoner and Pedersen-Weibel. Extending a theorem of Auslander and Sherman, we discuss the K-theory homotopy fiber of e⊕→ e and its implications for negative K-groups. In the appendix, we replace Waldhausen's cylinder functor by a slightly weaker form of non-functorial factorization which is still sufficient to prove his approximation and fibration theorems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.