Abstract

A negatively biased graphite sample (highly oriented pyrolitic graphite) was placed in a H2 low-pressure plasma. The negative ions were produced on the graphite surface upon positive-ion bombardment. Surface-produced H− negative-ion distribution functions (NIDFs) were measured by means of an energy-resolved mass spectrometer. The shapes of the recorded NIDFs depend not only on the surface production mechanisms but also on the negative-ion trajectories in the plasma and their collection probability by the mass spectrometer. In order to gain an insight into the surface production mechanisms, NIDFs were computed using Stopping and Range of Ions in Matter simulations and calculations of the ion transmission function between the sample and the mass spectrometer detector. The calculations were based on 3D modeling of the sheath potential in the extraction region and 3D modeling of ion transport inside the mass spectrometer. The excellent agreement between experiments and computations led to a better understanding of the experimental NIDFs. The method developed in this work to study H-surface production on graphite can be generalized to any other negative ions and/or surface material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.