Abstract

We present here a study of the collision induced dissociation (CID) of deprotonated cysteic acid containing peptides produced by MALDI. The effect of cysteic acid (C(ox)) position is interrogated by considering the positional isomers, C(ox)LVINVLSQG, LVINVLSQGC(ox), and LVINVC(ox)LSQG. Although considerable variation between the CID spectra is observed, the mechanistic picture that emerges involves charge retention at the deprotonated cysteic acid side chain. Fragmentation occurs in the proximity of the cysteic acid group by charge directed mechanisms as well as remote from this group to form ions, which may be rationalized by charge remote mechanisms. Additionally, the formation of the SO(3)(-•) ion is observed in all cases. Fragmentation of C(ox)LVINVLSQC(ox) provides both N- and C-terminal, y and b ions, respectively indicating that the negative charge may be retained at either of the cysteic acids; however, there is some evidence that charge retention at the C-terminal cysteic acid may be preferred. Fragmentation of tryptic type peptides containing a C-terminal arginine or lysine residue is considered through comparison of three peptides C(ox)LVINKLSQG, C(ox)LVINVLSQK, and C(ox)LVINVLSQR. Lastly, we rationalize the formation of b(n-1)+ H(2)O and a(n-1) ions through a mechanism involving rearrangement of the C-terminal residue to form a mixed anhydride intermediate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.