Abstract

The dissociation of deprotonated peptides containing hydroxyl side chains was studied by electrospray ionization coupled with Fourier transform ion cyclotron resonance (ESI-FTICR) via sustained off-resonance irradiation collision induced dissociation (SORI-CID). Dissociation under post-source decay (PSD) conditions was performed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). This work included hexapeptides with one residue of serine, threonine, or tyrosine and five inert alanine residues. During SORI-CID and PSD, dissociation of [M-H](-) yielded c- and y-ions. Side-chain losses of formaldehyde (HCHO) from serine-containing peptides, acetaldehyde (CH(3)CHO) from threonine-containing peptides, and 4-methylene-2,5-cycohexadienone (C(7)H(6)O) from tyrosine-containing peptides were generally observed in the negative ion PSD and SORI-CID spectra. Side-chain loss occurs much less from tyrosine-containing peptides than from serine- and threonine-containing peptides. This is probably due to the bulky side chain of tyrosine, resulting in steric hindrance and poor geometry for dissociation reactions. Additionally, a selective cleavage leading to the elimination of the C-terminal residue from [M-H](-) was observed from the peptides with serine and threonine at the C-terminus. This cleavage does not occur in the dissociation of peptides with an amide group at the C-terminus or peptides with neutral or basic residues at the C-terminus. It also does not occur with tyrosine at the C-terminus. Both the C-terminal carboxylic acid group and the hydroxyl side chain of the C-terminal residue must play important roles in the mechanism of C-terminal residue loss. A mechanism involving both the C-terminal carboxylic acid group and a hydroxyl side chain of serine and threonine is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call