Abstract

Minimal studies exist investigating biofilm-induced corrosion of orthopaedic implants. This study investigates potential contributions of Pseudomonas aeruginosa and Staphylococcus aureus biofilms on corrosion resistance of CoCrMo under static and fretting conditions. Biofilms were cultured on CoCrMo coupons for either 4 weeks (static culture) or 6 days (fretting culture; pin-on-disk with a Ti6Al4V hemispherical tip pin). Morphology of biofilms and corrosion of coupon surfaces were analyzed via SEM. Open circuit potential and electrochemical impedance spectroscopy measurements were collected for corrosion performance evaluation. Results showed no visible corrosion on coupon surfaces in static culture, which suggests these biofilms alone do not induce severe corrosion under the conditions of this study. However, electrochemical data showed biofilm presence lowered coupon electrochemical impedance in static and fretting cultures, suggesting resistive and capacitive characteristics of the metal oxide-biofilm-media interface were altered. Under fretting, the P. aeruginosa group exhibited a distinct damage morphology and Co:Cr:Mo ratio within the wear scar when compared with S. aureus and the bacteria-free control. These differences suggest the presence of P. aeruginosa biofilms may negatively impact corrosion resistance at the fretting interface. Taken together these results demonstrate biofilms can contribute to implant corrosion by influencing the electrochemical impedance of implant metal surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.