Abstract

Experimental demonstrations of metamaterials with negative index of refraction have been limited to microwave and IR frequencies. In this work, a freestanding multilayer thin-film metamaterial showing a strong negative index of refraction at terahertz frequencies is fabricated and characterized. The metamaterial consists of periodically arranged H-shaped wire-pair resonant structures separated by a 14.5-microm-thick and enclosed between two 26-microm-thick layers of benzocyclobutene polymer. Complex reflection and transmission parameters of the metamaterial are measured via terahertz time-domain spectroscopy and are used for the extraction of refractive material properties. Our results show good agreement with finite element field simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call