Abstract
This letter introduces the notion of linear time-varying (LTV) negative imaginary systems. LTV negative imaginary systems are defined using a time-domain dissipative supply rate $w$ ( $u,\dot {y}$ ) that depends on input to the system ( $u$ ), time-derivative of the system’s output ( $\dot {y}$ ) and an index $\delta \geq 0$ . For $\delta > 0$ , it gives rise to a strict subclass within the LTV negative imaginary systems, termed as LTV output strictly negative imaginary systems. For characterizing the proposed class of systems, a set of linear differential matrix inequality conditions is derived based on the given state-space realization. Subsequently, LTV negative imaginary theory is specialized to linear parameter-varying (LPV) cases for which, the differential matrix inequality conditions can easily be avoided by considering the rate of variation of the uncertain parameters as independent LMI variables. Finally, a set of sufficient conditions is derived which ensures that the origin is a globally asymptotically stable equilibrium point of an unforced positive feedback interconnection of two uniformly asymptotically stable LTV negative imaginary systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.