Abstract

The negative illumination thermoradiative solar cell (NITSC) consisting of a concentrator, an absorber, and a thermoradiative cell (TRC) is established, where the radiation and reflection losses from the absorber to the environment and the radiation loss from the TRC to the environment are taken into consideration. The power output and overall efficiency of the NITSC are analytically derived. The operating temperature of the TRC is determined through the thermal equilibrium equations, and the efficiency of the NITSC is calculated through the optimization of the output voltage of the TRC and the concentrating factor for a given value of the bandgap. Moreover, the maximum efficiencies of the NITSC at different conditions and the optimal values of the bandgap are determined, and consequently, the corresponding optimum operating conditions are obtained. The results obtained here will be helpful for the optimum design and operation of TRCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call