Abstract
The unicellular protonema of Chara fragilis Desv. was investigated in order to establish a reaction chain for negative gravitropism in tip-growing cells. The time course of gravitropic bending after stimulation at angles of 45 degrees or 90 degrees showed three distinct phases of graviresponse. During the first hour after onset of stimulation a strong upward shift of the tip took place. This initial response was followed by an interval of almost straight growth. Complete reorientation was achieved in a third phase with very low bending rates. Gravitropic reorientation could be completely abolished by basipetal centrifugation of the cells, which lastingly removed conspicuous dark organelles from the protonema tip, thus identifying them as statoliths. Within minutes after onset of gravistimulation most or all statoliths were transported acropetally from their resting position 20-100 micrometers from the cell apex to the lower side of the apical dome. This transport is actin-dependent since it could be inhibited with cytochalasin B. Within minutes after arrival of the statoliths, the apical dome flattened on its lower side and bulged on the upper one. After this massive initial response the statoliths remained firmly sedimented, but the distance between this sedimented complex and the cell vertex increased from 7 micrometers to 22 micrometers during the first hour of stimulation and bending rates sharply declined. From this it is concluded that only statoliths inside the apical dome convey information about the spatial orientation of the cell in the gravitropic reaction chain. After inversion of the protonema the statoliths transiently arranged into a disk-shaped complex about 8 micrometers above the vertex. When this statolith complex tilted towards one side of the apical dome, growth was shifted in the opposite direction and bending started. It is argued that the statoliths intruding into the apical dome may displace a growth-organizing structure from its symmetrical position in the apex and may thus cause bending by bulging. In the positively gravitropic Chara rhizoids only a more stable anchorage of the growth-organizing structure is required. As a consequence, sedimented statoliths cannot dislocate this structure from the vertex. Instead they obstruct a symmetrical distribution of cell-wall-forming vesicles around the structure and thus cause bending by bowing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.