Abstract
It is demonstrated that the electric dipole layer due to the overlapping of electron wave functions at the metal/graphene contact results in a negative Fermi-level pinning effect on the region of the GaAs surface with low interface-trap density in the metal/graphene/n-GaAs(001) junction. The graphene interlayer plays the role of a diffusion barrier, preventing the atomic intermixing at the interface and preserving the low interface-trap density region. The negative Fermi-level pinning effect is supported by the decrease of the Schottky barrier with the increase of the metal work function. Our work shows that the graphene interlayer can invert the effective work function of the metal between high and low, making it possible to form both Schottky and Ohmic-like contacts with identical (particularly high work function) metal electrodes on a semiconductor substrate possessing low surface-state density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.