Abstract

Kinetochores are specialised multi-protein complexes that play a crucial role in maintaining genome stability 1. They bridge attachments between chromosomes and microtubules during mitosis and they activate the spindle assembly checkpoint (SAC) to arrest division until all chromosomes are attached 2. Kinetochores are able to efficiently integrate these two processes because they can rapidly respond to changes in microtubule occupancy by switching localised SAC signalling ON or OFF 2–4. We show that this responsiveness arises because the SAC primes kinetochore phosphatases to induce negative feedback and silence its own signal. Active SAC signalling recruits PP2A-B56 to kinetochores where it antagonises Aurora B to promote PP1 recruitment. PP1 in turn silences the SAC and delocalises PP2A-B56. Preventing or bypassing key regulatory steps demonstrates that this spatiotemporal control of phosphatase feedback underlies rapid signal switching at the kinetochore by; 1) allowing the SAC to quickly transition to the ON state in the absence of antagonising phosphatase activity, and 2) ensuring phosphatases are then primed to rapidly switch the SAC signal OFF when kinetochore kinase activities are diminished by force-producing microtubule attachments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.