Abstract

Solid solutions are ubiquitous in metals and alloys. Local chemical ordering (LCO) is a fundamental sub-nano/nanoscale process that occurs in many solid solutions and can be used as a microstructure to optimize strength and ductility. However, the formation of LCO has not been fully elucidated, let alone how to provide efficient routes for designing LCO to achieve synergistic effects on both superb strength and ductility. Herein, we propose the formation and control of LCO in negative enthalpy alloys. With engineering negative enthalpy in solid solutions, genetic LCO components are formed in negative enthalpy refractory high-entropy alloys (RHEAs). In contrast to conventional 'trial-and-error' approaches, the control of LCO by using engineering negative enthalpy in RHEAs is instructive and results in superior strength (1160MPa) and uniform ductility (24.5%) under tension at ambient temperature, which are among the best reported so far. LCO can promote dislocation cross-slip, enhancing the interaction between dislocations and their accumulation at large tensile strains; sustainable strain hardening can thereby be attained to ensure high ductility of the alloy. This work paves the way for new research fields on negative enthalpy solid solutions and alloys for the synergy of strength and ductility as well as new functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call