Abstract

We establish virial and localized virial identities for solutions to the Hartree hierarchy, an infinite system of partial differential equations which arises in mathematical modeling of many body quantum systems. As an application, we use arguments originally developed in the study of the nonlinear Schrödinger equation (see work of Zakharov, Glassey, and Ogawa–Tsutsumi) to show that certain classes of negative energy solutions must blowup in finite time. The most delicate case of this analysis is the proof of negative energy blowup without the assumption of finite variance; in this case, we make use of the localized virial estimates, combined with the quantum de Finetti theorem of Hudson and Moody and several algebraic identities adapted to our particular setting. Application of a carefully chosen truncation lemma then allows for the additional terms produced in the localization argument to be controlled.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.