Abstract

High surface ozone concentrations are recognized as an emerging threat to food security in Asia. This study aimed at determining the effects of ozone on the nutritive quality of rice straw, a by-product of rice grain production and a major feed resource for ruminant livestock. Further, the question was addressed whether negative effects of ozone can be mitigated through molecular breeding. Rice plants from three different genotypes were exposed to four different ozone treatments in fumigation chambers from transplanting to maturity. These genotypes were (i) IR64, one of the most wide spread indica varieties in the world, (ii) Nipponbare, a typical japonica variety, and (iii) SL41, an ozone tolerant breeding line that carried chromosomal inserts at the ozone tolerance QTL OzT9 in the genetic background of Nipponbare. The treatments consisted of (i) charcoal filtered air, (ii) simulated ambient ozone concentration, (iii) 2 × ambient ozone concentration, and (iv) 2.5 × ambient ozone concentration. The effects of ozone on the chemical composition of straw were clearly dependent of the ozone level, and were significant even at ambient ozone concentration. Increases in crude ash, lignin and phenolics concentration adversely affected the digestibility as demonstrated in incubation experiments simulating rumen digestion in vitro. Negative ozone effects included reductions in the rate and extent of gas production due to inhibition of microbial fermentation, reduced formation of short chain fatty acids (SCFA), and a decrease in the true organic matter digestibility. The ozone tolerant genotype SL41 was less responsive to ozone than its more susceptible recurrent parent Nipponbare in terms of lignin and phenolics formation, organic matter digestibility and SCFA production. These data demonstrate that the feed quality of rice straw is affected by ozone even at ambient concentration, and that these negative effects are mitigated by the ozone tolerance QTL OzT9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.