Abstract

G-protein-coupled receptor 40 (GPR40) and GPR120 mediate a variety of biological functions by the binding of long and medium chain free fatty acids. In the present study, we investigated a role of GPR40 in the pathogenesis of fibrosarcoma HT1080 cells. The GPR40 gene expression was detected in HT1080 cells, but not the GPR120 gene. The cell motile and invasive activities were markedly enhanced by GPR40 knockdown, compared with control cells. To evaluate whether GPR40 is involved in the cellular functions of HT1080 cells during anticancer drug treatment, HT1080 cells were maintained in condition medium containing cisplatin (CDDP) (0.01-1.0 μM) for 6 mo. The expression levels of the GPR40 gene was elevated by the long-term CDDP treatment in HT1080 cells, while the GPR120 gene expression remained unchanged. The cell motile and invasive activities of HT1080 cells treated with CDDP were significantly lower than those of untreated cells. In gelatin zymography, the activities of matrix metalloproteinase-2 (MMP-2) and MMP-9 of HT1080 cells were enhanced by the long-term CDDP treatment. In addition, GW9508 which is an agonist of GPR40 and GPR120 suppressed the cell motile and invasive activities of HT1080 cells treated with CDDP as well as the MMP activation. These results suggest that GPR40 negatively regulates the tumor progression of fibrosarcoma cells. © 2015 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.