Abstract

Metal-oxide nanoparticles (NPs) such as copper oxide (CuO) NPs offer promising perspectives for the development of novel agro-chemical formulations of pesticides and fertilizers. However, their potential impact on agro-ecosystem functioning still remains to be investigated. Here, we assessed the impact of CuO-NPs (0.1, 1, and 100 mg/kg dry soil) on soil microbial activities involved in the carbon and nitrogen cycles in five contrasting agricultural soils in a microcosm experiment over 90 days. Additionally, in a pot experiment, we evaluated the influence of plant presence on the toxicity of CuO-NPs on soil microbial activities. CuO-NPs caused significant reductions of the three microbial activities measured (denitrification, nitrification, and soil respiration) at 100 mg/kg dry soil, but the low concentrations (0.1 and 1 mg/kg) had limited effects. We observed that denitrification was the most sensitive microbial activity to CuO-NPs in most soil types, while soil respiration and nitrification were mainly impacted in coarse soils with low organic matter content. Additionally, large decreases in heterotrophic microbial activities were observed in soils planted with wheat, even at 1 mg/kg for soil substrate-induced respiration, indicating that plant presence did not mitigate or compensate CuO-NP toxicity for microorganisms. These two experiments show that CuO-NPs can have detrimental effects on microbial activities in soils with contrasting physicochemical properties and previously exposed to various agricultural practices. Moreover, we observed that the negative effects of CuO-NPs increased over time, indicating that short-term studies (hours, days) may underestimate the risks posed by these contaminants in soils.

Highlights

  • Copper nanoparticles are increasingly used in various commercial products, including agrochemicals, paints, semiconducting compounds, sensors, catalyzers, and antimicrobial products, which leads to their growing release into terrestrial and aquatic ecosystems (Keller et al, 2017)

  • On day 90, Substrate-Induced Respiration (SIR) significantly decreased in all the treatments in Brindas soil (Figure 1A), including the 0.1 and 1 mg/kg CuONP doses that led to the highest reductions (−45 and −47%, respectively)

  • Further confirming the influence of root biomass on microbial activities, we found that the shoot/root ratio was negatively correlated to microbial activities linked to the N cycle [R2 = 0.57; F(1, 13) = 17.1, P = 0.00012 and R2 = 0.48; F(1, 13) = 11.9, P = 0.004, respectively for Nitrification Enzyme Activity (NEA) and Denitrification Enzyme Activity (DEA)] but not to SIR

Read more

Summary

Introduction

Copper nanoparticles are increasingly used in various commercial products, including agrochemicals, paints, semiconducting compounds, sensors, catalyzers, and antimicrobial products, which leads to their growing release into terrestrial and aquatic ecosystems (Keller et al, 2017). Only four studies have examined CuO-NP, and these studies were conducted using unrealistic exposure conditions with high concentrations of CuO-NPs ranging from 100 mg/kg to 10 g/kg of soil (Ben-Moshe et al, 2010; Rousk et al, 2012; Frenk et al, 2013; Xu et al, 2015), compared to expected concentrations in soil in the μg/kg to low mg/kg range (Garner and Keller, 2014) These studies were performed on one or two model soils that presented predominantly sandyloam texture. More research needs to be performed to assess the effects of realistic concentrations of CuO-NPs on microbial functioning in soils exhibiting contrasting physicochemical properties

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.