Abstract

Ab initio calculations reveal an unknown energetic phenomenon for H-bonds in the hole-trapping triplex C(p)*GC motif observed experimentally in hole migration which can explain the lower but really available oxidization possibility in C(p)*GC site. Hole trapping can considerably destabilize the C(p)*GC unit and lead to an unexpected barrier-hindered channel with a negative dissociation energy. This channel is governed by a balance between electrostatic repulsion and H-bonding attraction in the two associated moieties and different attenuations of two opposite interactions with respect to the H-bond distance. This C(p)*GC unit can be viewed as a high-energy node in a DNA wire which modulates migration of a hole into or through it via its unusual energetics. It provides useful information for understanding of an unknown type of the complicated intermolecular interactions, a novel type of "high-energy" bond, and can be applied further to interpret the hidden transport properties and the energy conversion/transfer mechanisms in the related fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.