Abstract

It has recently been shown that in one-dimensional hard-point gases, there is a mechanism that induces negative differential thermal resistance (NDTR) between heat baths. We examine this mechanism in more general higher-dimensional fluids described by multiparticle collision dynamics. We consider fluids in a finite cuboid region of three-dimensional space with each end in contact with a heat bath. Based on analytical results and numerical models, we find that the mechanism underlying NDTR also works for high-dimensional fluidic systems with weak interactions and is very robust to mixed fluids. Our results significantly advance knowledge of NDTR induced by heat baths and illuminate different directions to explore in fabricating fluid thermal transistors in micro- and nanosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call