Abstract

Formation of moir\'{e} superlattices is common in Van der Waals heterostructures as a result of the mismatch between lattice constants and misalignment of crystallographic directions of the constituent two-dimensional crystals. We discuss theoretically electron transport in a Van der Waals tunnelling transistor in which one of the electrodes is made of two crystals forming a moir\'{e} superlattice at their interface. By investigating structures containing either the aligned graphene/hexagonal boron nitride heterostructure or twisted bilayer graphene, we show that negative differential resistance is possible in such transistors as a consequence of the superlattice-induced changes in the electronic density of states and without the need of momentum conserving tunnelling present in high-quality exfoliated devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call