Abstract

Negative differential resistance (NDR) region was established in Si/GaAs tunnel junction (TJ) formed by single crystalline nanomembrane (NM) transfer method. P + Si NM was transfer-printed onto n + GaAs epi-wafer, leading to the formation of Si/GaAs pn TJ diode comprised of crystalline semiconductors with no biaxial strain. Atomic-scale features at the Si/GaAs junction interface were analyzed by high-resolution transmission-electron-microscopy. The mechanism for NDR phenomenon in the electrical characteristics of Si/GaAs TJ diode was explained by the energy band diagram with a quantum mechanical band-to-band tunneling of carriers. The peak-to-valley-ratio value of TJ diode was 2.32. The results can be applicable to the fabrication of low-power circuits with a combination of lattice-mismatched crystalline semiconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call