Abstract

Driven particles in the presence of crowded environment, obstacles, or kinetic constraints often exhibit negative differential mobility (NDM) due to their decreased dynamical activity. Based on the empirical studies of conserved lattice gas model, two species exclusion model and other interacting particle systems we propose a new mechanism for complex many-particle systems where slowing down of certain non-driven degrees of freedom by the external field can give rise to NDM. To prove that the slowing down of the non-driven degrees is indeed the underlying cause, we consider several driven diffusive systems including two species exclusion models, misanthrope process, and show from the exact steady state results that NDM indeed appears when some non-driven modes are slowed down deliberately. For clarity, we also provide a simple pedagogical example of two interacting random walkers on a ring which conforms to the proposed scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.