Abstract

The observation of negative differential conductance (NDC) in simple nanostructure geometries fabricated on high-mobility Si/SiGe strained-layer heterostructures is reported. The NDC is observed in the drain characteristic of etch-defined “point contacts” with lithographic width and length of 0.22, and 0.12 μm, respectively. Current peak-to-valley ratios as large as 2.0 are observed at T=1.3 K. The NDC is also observed in “wire” geometries as long as 19 μm, and can persist to temperatures as high as 83 K, with a minimum in the differential conductance observable at 103 K. The NDC in long wires is accompanied by the formation of a high-field domain at the drain end of the wire. The effect is only observed in laterally constricted geometries, but is not a result of quantum confinement or impurity-related trapping. We suggest that the NDC and the attendant domain formation are caused by phonon emission by hot electrons within the constricted geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.