Abstract

The electronic and structural properties of Au/ZnO under industrial and idealized methanol synthesis conditions have been investigated. This was achieved by kinetic measurements in combination with time-resolved operando infrared (DRIFTS) as well as in situ near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) and X-ray absorption near-edge spectroscopy (XANES) measurements at the O K-edge together with high-resolution electron microscopy. The adsorption of CO during the reaction revealed the presence of negatively charged Au nanoparticles/Au sites during the initial phase of the reaction. Near-ambient-pressure XPS and XANES demonstrate the build-up of O vacancies during the reaction, which goes along with a substantial increase in the rate of methanol formation. The results are discussed in comparison with previous findings for Cu/ZnO and Au/ZnO catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call