Abstract

In its resting state, Rho GDP-dissociation inhibitor (RhoGDI) α forms a soluble cytoplasmic heterodimer with the GDP-bound form of Rac. Upon stimulation, the dissociation of RhoGDIα from the RhoGDIα-Rac complex is a mandatory step for Rac activation; however, this mechanism is poorly understood. In this study, we examined how the cytoplasm/membrane cycles of the RhoGDI-Rac complex are regulated, as well as where RhoGDI dissociates from the RhoGDI-Rac complex, during FcγR-mediated phagocytosis. The negatively charged and flexible N terminus (25 residues) of RhoGDIα, particularly its second negative amino acid cluster possessing five negatively charged amino acids, was a pivotal regulator in the cytoplasm/membrane cycles of the RhoGDI-Rac complex. We also found that RhoGDIα translocated to the phagosomes as a RhoGDIα-Rac1 complex, and this translocation was mediated by an interaction between the polybasic motif in the C terminus of Rac1 and anionic phospholipids produced on phagosomes, such as phosphatidic acid, that is, by a phagosome-targeting mechanism of Rac1. Thus, we demonstrated that the targeting/accumulation of the RhoGDIα-Rac1 complex to phagosomes is regulated by a balance between three factors: 1) the negatively charged and flexible N-terminal of RhoGDIα, 2) the binding affinity of RhoGDIα for Rac1, and 3) anionic phospholipids produced on phagosomes. Moreover, we demonstrated that the mechanism of targeting/accumulation of the RhoGDIα-Rac1 complex is also applicable for the RhoGDIβ-Rac1 complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call