Abstract

Thin films of Al2O3 synthesized by atomic layer deposition provide an excellent level of interface passivation of crystalline silicon (c-Si) after a postdeposition anneal. The Al2O3 passivation mechanism has been elucidated by contactless characterization of c-Si/Al2O3 interfaces by optical second-harmonic generation (SHG). SHG has revealed a negative fixed charge density in as-deposited Al2O3 on the order of 1011 cm−2 that increased to 1012–1013 cm−2 upon anneal, causing effective field-effect passivation. In addition, multiple photon induced charge trapping dynamics suggest a reduction in recombination channels after anneal and indicate a c-Si/Al2O3 conduction band offset of 2.02±0.04 eV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.