Abstract

We report a strong negative capacitance effect in back to back combination of a metal-insulator-semiconductor (MIS) structure and a metal-semiconductor junction, which is fabricated on an n type Silicon-on-Insulator substrate. The MIS capacitor comprises a SiO2-HfO2 insulator stack with embedded Pt nanoparticles. The capacitor undergoes a voltage stress process and thereby turns into a varactor and a photodetector. The negative capacitance is observed only under illumination in structures that employ a Schottky back contact. A symmetric double or an asymmetric single negative capacitance peak is observed depending on the nature of illumination. The phenomenon is attributed to the modulation of the semiconductor conductance due to photo generated carriers and their incorporation in trapping/de-trapping processes on interfacial and post filamentation induced defects in the insulator stack. The frequency range of the observed effect is limited to 100 kHz. Large ratios of light to dark and maximum to minimum of negative capacitances as well as of the obtained sensitivity to the applied voltage are, respectively, 105, more than 100, and 10-15. These were measured at 10 kHz under illumination at 365 nm with a power of 2.5 × 10−6 W.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.