Abstract
Impact ionization phenomena in the collector region of AlGaAs/GaAs heterojunction bipolar transistors give rise to base current reduction and reversal. These phenomena can be characterized by extracting the M-1 coefficient, which can be evaluated by measuring base current changes. Measurements of M-1 are affected at low current densities by the presence of the collector-base junction reverse current I/sub CBO/. At high current densities, three effects contribute to lower the measured M-1 value: voltage drops due to collector (R/sub C/) and base (R/sub B/) parasitic resistances, device self-heating, and lowering of the base-collector junction electric field due to mobile carriers. By appropriately choosing the emitter current value, parasitic phenomena are avoided and the behavior of M-1 as a function of the collector-base voltage V/sub CB/ in AlGaAs/GaAs HBTs is accurately characterized.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.