Abstract
We develop the model for the terahertz (THz) and infrared (IR) photoconductivity of graphene layers (GLs) at room temperature. The model accounts for the linear GL energy spectrum and the features of the energy relaxation and generation-recombination mechanisms inherent at room temperature, namely, the optical phonon absorption and emission and the Auger interband processes. Using the developed model, we calculate the spectral dependences of the THz and IR photoconductivity of the GLs. We show that the GL photoconductivity can change sign depending on the photon frequency, the GL doping and the dominant mechanism of the carrier momentum relaxation. We also evaluate the responsivity of the THz and IR photodetectors using the GL photoconductivity. The obtained results along with the relevant experimental data might reveal the microscopic processes in GLs, and the developed model could be used for the optimization of the GL-based photodetectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.