Abstract

MAPK phosphatases (MKPs) are dual specificity phosphatases that dephosphorylate and thereby inactivate MAPKs. In the present study, we provide evidence that platelet-derived growth factor BB (PDGF-BB) regulates MKP3 (DUSP6), which is considered to be a phosphatase highly selective for Erk. Intriguingly, we observed that Mek is positively regulated by MKP3, whereas Erk itself is negatively regulated. In addition, we found that activation of PDGF receptor alpha or beta leads to a rapid proteasomal degradation of MKP3 in a manner that requires Mek activation; this feed-forward mechanism was found to be essential for efficient Erk phosphorylation. We could also demonstrate that PDGF-BB stimulation induces phosphorylation of MKP3 at Ser-174 and Ser-300; phosphorylation of Ser-174 is involved in PDGF-induced MKP3 degradation, since mutation of this site stabilized MKP3. Moreover, activated Erk induces mkp3 expression, leading to restoration of MKP3 levels after 1-2 h and a concomitant dephosphorylation of Erk in cells with activated PDGFRalpha. Reducing the MKP3 level by small interfering RNA leads to an increased Erk activation and mitogenic response to PDGF-BB. In conclusion, MKP3 is an important regulator of PDGF-induced Erk phosphorylation acting in both a rapid positive feed-forward and a later negative feed-back loop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.