Abstract

We investigated the thermoelasticity of polydimethylsiloxane (PDMS) gels containing six types of solvents with different solubilities. The contribution of energetic elasticity to the total stress (σE/σ) ranges from +0.20 to -0.20 depending on the solvent species. The σE/σ values are positive for the solvents with low molecular mass. By contrast, it is negative for oligodimethylsiloxane (ODMS) or PDMS solvents acting as athermal solvents, each of which has the same chemical structure as the network strands. The investigation using a PDMS rubber without a solvent and the PDMS gels with various ODMS contents reveal a crossover of the σE/σ value from positive to negative with increasing ODMS content. The pronounced dependence of σE/σ on the solvent species and the negative energetic elasticity specific to the high contents of ODMS and PDMS unveil previously unknown aspects of thermoelasticity of polymer gels. The orientation coupling between the segments of the free polymeric chains and network strands is one of the possible scenarios to explain the negative energetic elasticity specific to the ODMS and PDMS solvents, because it stabilizes the aligned state, reducing the elastic energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call