Abstract
Aneurysmal subarachnoid hemorrhage (SAH) causes permanent neurological sequelae, but the underlying mechanism needs to be further clarified. Here, we show that inhibition of metabotropic glutamate receptor 1 (mGluR1) with negative allosteric modulator JNJ16259685 improves long-term neurobehavioral outcomes in an endovascular perforation model of SAH. JNJ16259685 improves cerebrovascular dysfunction through attenuation of cerebral blood flow (CBF) reduction, cerebral vasoconstrictio, and microthrombosis formation in a rat SAH model. Moreover, JNJ16259685 reduces experimental SAH-induced long-term neuronal damage through alleviation of neuronal death and degeneration. Mechanically, JNJ16259685 maintains phosphorylation of endothelial NO synthase (eNOS) and vasodilator-stimulated phosphoprotein (VASP) and decreases apoptosis-related factors Bax, active caspase-9, and active caspase-3 following experimental SAH. Altogether, our results suggest JNJ16259685 improves long-term functional impairment through neurovascular protection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.