Abstract

There is an emerging body of evidence that implicates a crucial role of γ-aminobutyric acid subtype A (GABAA) receptors in modulating the rewarding effects of a number of abused drugs. Modulation of GABAA receptors may therefore represent a novel drug-class independent mechanism for the development of abuse treatment pharmacotherapeutics. We tested the hypothesis that the GABAA receptor benzodiazepine-site (BDZ) negative modulator Ro15-4513 would reduce the reward-related effects of three pharmacologically dissimilar drugs; toluene vapor, d-methamphetamine, and diazepam using intracranial self-stimulation (ICSS) in mice. We also examined whether Ro15-4513 attenuated dopamine release produced by d-methamphetamine in an in vivo microdialysis procedure. Ro15-4513 abolished ICSS reward facilitation produced by all three abused drugs at Ro15-4513 doses which had no effect on ICSS when administered alone. In contrast, the BDZ antagonist flumazenil only attenuated the ICSS-facilitating effects of diazepam. Administration of the same dose of Ro15-4513 which abolished drug-facilitated ICSS produced a 58% decrease in d-methamphetamine-stimulated dopamine in the nucleus accumbens of mice relative to d-methamphetamine alone. These results demonstrate that negative modulation of GABAA receptors can produce profound reductions in reward-related effects of a diverse group of drugs that activate the mesolimbic reward pathway through different mechanisms. These data suggest that pharmacological modulation of GABAA receptors may represent a viable pathway for the development of drug abuse pharmacotherapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call