Abstract
Identifying negation scopes in a text is an important subtask of information extraction, that can benefit other natural language processing tasks, like relation extraction, question answering and sentiment analysis. And serves the task of social media text understanding. The task of negation scope detection can be regarded as a token-level sequence labeling problem. In this paper, we propose different models based on recurrent neural networks (RNNs) and word embedding that can be successfully applied to such tasks without any task-specific feature engineering efforts. Our experimental results show that RNNs, without using any hand-crafted features, outperform feature-rich CRF-based model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.