Abstract
An in-vitro study was conducted to investigate the metabolism of nefiracetam in human liver microsomes and to identify the enzymes responsible for the metabolism. Nefiracetam was hydroxylated by human liver microsomes to 5-hydroxynefiracetam (5-OHN). Eadie-Hofstee plots for the formation of 5-OHN suggested substrate activation. The kinetic parameters, apparent Km, Vmax, and Hill coefficient, for the formation of 5-OHN by pooled human liver microsomes were 4012 microM, 2.66 nmol min(-1) (mg protein)(-1), and 1.65, respectively. The formation of 5-OHN was significantly correlated with cytochrome P450 (CYP)3A4-mediated testosterone 6beta-hydroxylase activity and dextromethorphan N-demethylase activity. The 5-OHN formation was inhibited (94%) by antibody to human CYP3A4/5. The 5-OHN formation was also inhibited by the CYP3A4 inhibitors ketoconazole and troleandomycin, but not significantly inhibited by several other P450 inhibitors. The microsomes containing cDNA-expressed CYP3A4 formed 5-OHN with sigmoidal kinetics. CYP3A5-containing microsomes did not form 5-OHN. These results indicated that CYP3A, most likely CYP3A4, was the major isozyme responsible for the formation of 5-OHN in human liver microsomes. CYP1A2 and CYP2C19 microsomes were also capable of forming 5-OHN. However, the contribution of CYP1A2 was considered to be relatively minor compared with that of CYP3A4, and the contribution of CYP2C19 was assumed to be negligible, based on the result of the immunoinhibition study and taking into account both the turnover rate by each isozyme and the relative abundance of each isozyme in human liver. We conclude that on average the formation of 5-OHN, the major metabolite of nefiracetam, is principally mediated by CYP3A4 with a relatively minor contribution by CYP1A2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.