Abstract

Neferine (Nef) has a renal protective effect. This research intended to explore the impact of Nef on hyperuricemic nephropathy (HN). Adenine and potassium oxonate were administered to SD rats to induce the HN model. Bone marrow macrophages (BMDM) and NRK-52E were used to construct a transwell co-culture system. The polarization of BMDM and apoptosis levels were detected using immunofluorescence and flow cytometry. Renal pathological changes were detected using hematoxylin-eosin (HE) and Masson staining. Biochemical methods were adopted to detect serum in rats. CCK-8 and EDU staining were used to assess cell activity and proliferation. RT-qPCR and western blot were adopted to detect NLRC5, NLRP3, pyroptosis, proliferation, and apoptosis-related factor levels. After Nef treatment, renal injury and fibrosis in HN rats were inhibited, and UA concentration, urinary protein, BUN, and CRE levels were decreased. After Nef intervention, M1 markers, pyroptosis-related factors, and NLRC5 levels in BMDM stimulated with uric acid (UA) treatment were decreased. Meanwhile, the proliferation level of NRK-52E cells co-cultured with UA-treated BMDM was increased, but the apoptosis level was decreased. After NLRC5 overexpression, Nef-induced regulation was reversed, accompanied by increased NLRP3 levels. After NLRP3 was knocked down, the levels of M1-type markers and pyroptosis-related factors were reduced in BMDM. Nef improved HN by inhibiting macrophages polarized to M1-type and pyroptosis by targeting the NLRC5/NLRP3 pathway. This research provides a scientific theoretical basis for the treatment of HN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call