Abstract

The vascular endothelium, as the interface between the blood and the surrounding tissues, plays a pivotal role in inflammation. Neferine, which was isolated from Lotus Plumule, has many biological roles, such as antifibrotic, antioxidative, anti-inflammatory, and antineoplastic activities. We demonstrated the role of neferine in the inhibition of pro-adhesion and pro-inflammatory responses of endothelial cells in vitro. We found that neferine could significantly inhibit the adhesion of Tohoku Hospital Pediatrics-1 (THP-1) cells to primary human umbilical vein endothelial cells (HUVECs). At the molecular level, neferine could significantly alleviate the interleukin 1β (IL-1β)-induced mRNA and protein expression of intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1). Our data showed that neferine suppressed nuclear factor-κB (NF-κB) nuclear translocation and inhibited the NF-κB-p65-induced transcriptional activity of ICAM1 and VCAM1. Therefore, we concluded that neferine suppressed the inflammatory response in endothelial cells in vitro, which could be mainly due to inhibition of NF-κB signaling activation. Moreover, we found that neferine alleviated LPS-induced acute inflammation injury in vivo. Thus, neferine may serve as an effective regulator during the pathogenesis of vascular inflammatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call