Abstract
To investigate the effect of Neferine (Nef) on diabetic nephropathy (DN) and to explore the mechanism of Nef in DN based on miRNA regulation theory. A DN mouse model was constructed and treated with Nef. Serum creatinine (Crea), blood urea (UREA) and urinary albumin were measured in mice by kits, and renal histopathological changes and fibrosis were observed by hematoxylin-eosin staining and Masson staining. Renal tissue superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) activities were measured by enzyme-linked immunosorbent assay (ELISA). Western blotting was used to detect the expression of nuclear factor E2-related factor 2 (Nrf2)/ heme oxygenase 1 (HO-1) signaling pathway-related proteins in kidney tissues. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the expression of miR-17-5p in kidney tissues. Subsequently, a DN in vitro model was constructed by high glucose culture of human mesangial cells (HMCs), cells were transfected with miR-17-5p mimic and/or treated with Nef, and we used qRT-PCR to detect cellular miR-17 expression, flow cytometry to detect apoptosis, ELISAs to detect cellular SOD, MDA, and GSH-Px activities, Western blots to detect Nrf2/HO-1 signaling pathway-related protein expression, and dual luciferase reporter gene assays to verify the targeting relationship between Nrf2 and miR-17-5p. Administration of Nef significantly reduced the levels of blood glucose, Crea, and UREA and the expression of miR-17-5p, improved renal histopathology and fibrosis, significantly reduced MDA levels, elevated SOD and GSH-Px activities, and activated Nrf2 expression in kidney tissues from mice with DN. Nrf2 is a post-transcriptional target of miR-17-5p. In HMCs transfected with miR-17-5p mimics, the mRNA and protein levels of Nrf2 were significantly suppressed. Furthermore, miR-17-5p overexpression and Nef intervention resulted in a significant increase in high glucose-induced apoptosis and MDA levels in HMCs and a significant decrease in the protein expression of HO-1 and Nrf2. Collectively, these results indicate that Nef has an ameliorative effect on DN, and the mechanism may be through the miR-17-5p/Nrf2 pathway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.