Abstract

The study deals with the process of estimation of material parameters from uniaxial test data of arterial tissue and focuses on the role of transverse strains. Two fitting strategies are analyzed and their impact on the predictive and descriptive capabilities of the resulting model is evaluated. The standard fitting procedure (strategy A) based on longitudinal stress-strain curves is compared with the enhanced approach (strategy B) taking also the transverse strain test data into account. The study is performed on a large set of material data adopted from literature and for a variety of constitutive models developed for fibrous soft tissues. The standard procedure (A) ignoring the transverse strain test data is found rather hazardous, leading often to unrealistic predictions of the model exhibiting auxetic behaviour. In contrast, the alternative fitting method (B) ensures a realistic strain response of the model and is proved to be superior since it does not require any significant demands of computational effort or additional testing. The results presented in this paper show that even the artificial transverse strain data (i.e., not measured during testing but generated ex post based on assumed Poisson's ratio) are much less hazardous than total disregard of the transverse strain response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.