Abstract

Siphonophores are ubiquitous and often highly abundant members of pelagic ecosystems throughout the open ocean. They are unique among animal taxa in that many species use multiple jets for propulsion. Little is known about the kinematics of the individual jets produced by nectophores (the swimming bells of siphonophores) or whether the jets are coordinated during normal swimming behavior. Using remotely operated vehicles and SCUBA, we video recorded the swimming behavior of several physonect species in their natural environment. The pulsed kinematics of the individual nectophores that comprise the siphonophore nectosome were quantified and, based on these kinematics, we examined the coordination of adjacent nectophores. We found that, for the five species considered, nectophores located along the same side of the nectosomal axis (i.e. axially aligned) were coordinated and their timing was offset such that they pulsed metachronally. However, this level of coordination did not extend across the nectosome and no coordination was evident between nectophores on opposite sides of the nectosomal axis. For most species, the metachronal contraction waves of nectophores were initiated by the apical nectophores and traveled dorsally. However, the metachronal wave of Apolemia rubriversa traveled in the opposite direction. Although nectophore groups on opposite sides of the nectosome were not coordinated, they pulsed with similar frequencies. This enabled siphonophores to maintain relatively linear trajectories during swimming. The timing and characteristics of the metachronal coordination of pulsed jets affects how the jet wakes interact and may provide important insight into how interacting jets may be optimized for efficient propulsion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.