Abstract

Autophagy, a conserved cellular degradative process, plays a crucial role in innate immunity during viral infections. Nervous necrosis virus (NNV), a leading cause of fish diseases with morbidity and mortality, triggers cell autophagy to promote viral replication; however, the details of how NNV utilises autophagy to facilitate its own replication remain largely unexplored. Here, we investigated the mechanism by which the sea perch Nectin4 (LjNectin4), a receptor of NNV, regulates autophagy and the innate immune system by targeting TNFR-associated factor 3 (TRAF3). Our data demonstrated that LjNectin4 directly binds to the NNV capsid protein and facilitates NNV entry, indicating that LjNectin4 functions as an NNV receptor. Moreover, LjNectin4 promoted NNV replication by inhibiting key elements of the RLR signalling pathway (MDA5, MAVS, TRAF3, TBK1, and IRF3)-induced IFN response. Mechanistically, LjNectin4 directly interacted with TRAF3 and promoted its autophagy-mediated lysosomal degradation. Domain mapping of the interaction between TRAF3 and LjNectin4 or TBK1 showed that both LjNectin4 and TBK1 interacted with the ZF2 and TRAF-C domains of TRAF3, suggesting that LjNectin4 blocked TRAF3-TBK1 complex formation. Collectively, our study revealed that NNV utilises LjNectin4 to suppress IFN production by mediating TRAF3 autophagic degradation and disrupting the TRAF3-TBK1 complex, thereby promoting NNV replication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call