Abstract

PurposeNectin-4 is specifically up-regulated in various tumors, exert crucial effects on tumor occurrence and development. Nevertheless, the role and molecular mechanism of Nectin-4 in osteosarcoma (OS) are rarely studied.MethodsThe expression of Nectin-4 and its relationship with clinical characteristics of OS were investigated using OS clinical tissues, tissue microarrays, TCGA, and GEO databases. Moreover, the effect of Nectin-4 on cell growth and mobility was detected by CCK-8, colony formation, transwell, and wound-healing assays. The RT-qPCR, Western blotting, and luciferase reporter assays were performed to explore molecular mechanisms through which Nectin-4 mediates the expression of miR-520c-3p, thus modulating PI3K/AKT/NF-κB signaling. In vivo mice models constructed by subcutaneous transplantation and tail vein injection were used to validate the functional roles of Nectin-4 and miR-520c-3p.ResultsNectin-4 displayed a higher expression in OS tumor tissues compared with normal tissues, and its overexpression was positively associated with tumor stage and metastasis in OS patients. Functionally, Nectin-4 enhanced OS cells growth and mobility in vitro. Mechanistically, Nectin-4 down-regulated the levels of miR-520c-3p that directly targeted AKT-1 and P65, thus leading to the stimulation of PI3K/AKT/NF-κB signaling. In addition, the expression of miR-520c-3p was apparently lower in OS tissues than in normal tissues, and its low expression was significantly related to tumor metastasis. Furthermore, ectopic expression of miR-520c-3p markedly blocked the effect of Nectin-4 on OS cell growth and mobility. Knockdown of Nectin-4 could suppress the tumorigenesis and metastasis in vivo, which could be remarkably reversed by miR-520c-3p silencing.ConclusionsNectin-4 as an oncogene can promote OS progression and metastasis by activating PI3K/AKT/NF-κB signaling via down-regulation of miR-520c-3p, which could represent a novel avenue for identifying a potential therapeutic target for improving patient outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call