Abstract

This theoretical thermofluid analysis investigates the relationships between honey production rate, nectar concentration and the parameters of entrance size, nest thermal conductance, brood nest humidity and the temperatures needed for nectar to honey conversion. It quantifies and shows that nest humidity is positively related to the amount, and water content of the nectar being desiccated into honey and negatively with respect to nest thermal conductance and entrance size. It is highly likely that honeybees, in temperate climates and in their natural home, with much smaller thermal conductance and entrance, can achieve higher humidities more easily and more frequently than in man-made hives. As a consequence, it is possible that Varroa destructor, a parasite implicated in the spread of pathogenic viruses and colony collapse, which loses fecundity at absolute humidities of 4.3 kPa (approx. 30 gm-3) and above, is impacted by the more frequent occurrence of higher humidities in these low conductance, small entrance nests. This study provides the theoretical basis for new avenues of research into the control of varroa, via the modification of beekeeping practices to help maintain higher hive humidities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.