Abstract
BackgroundThere is widespread interkingdom signalling between insects and microbes. For example, microbes found in floral nectar may modify its nutritional composition and produce odorants that alter the floral odor bouquet which may attract insect pollinators. Mosquitoes consume nectar and can pollinate flowers. We identified microbes isolated from nectar of common tansy, Tanacetum vulgare, elucidated the microbial odorants, and tested their ability to attract the common house mosquito, Culex pipiens.ResultsWe collected 19 microbial isolates from T. vulgare nectar, representing at least 12 different taxa which we identified with 16S or 26S rDNA sequencing as well as by biochemical and physiological tests. Three microorganisms (Lachancea thermotolerans, Micrococcus lactis, Micrococcus luteus) were grown on culture medium and tested in bioassays. Only the yeast L. thermotolerans grown on nectar, malt extract agar, or in synthetic nectar broth significantly attracted Cx. pipiens females. The odorant profile produced by L. thermotolerans varied with the nutritional composition of the culture medium. All three microbes grown separately, but presented concurrently, attracted fewer Cx. pipiens females than L. thermotolerans by itself.ConclusionsFloral nectar of T. vulgare contains various microbes whose odorants contribute to the odor profile of inflorescences. In addition, L. thermotolerans produced odorants that attract Cx. pipiens females. As the odor profile of L. thermotolerans varied with the composition of the culture medium, we hypothesize that microbe odorants inform nectar-foraging mosquitoes about the availability of certain macro-nutrients which, in turn, affect foraging decisions by mosquitoes.
Highlights
There is widespread interkingdom signalling between insects and microbes
Floral nectar provides nutrition and habitat for myriad microorganisms [5,6,7,8,9,10] that may alter the composition of nectar [11] and produce odorants [8, 12, 13], thereby modifying the inflorescence odor bouquet [13,14,15]
Sampling a total of 40 florets from 20 inflorescences (2 florets per inflorescence) from 4 plants (5 inflorescences per plant), we found the yeast L. thermotolerans in nectar from two separate florets on two separate plants
Summary
There is widespread interkingdom signalling between insects and microbes. For example, microbes found in floral nectar may modify its nutritional composition and produce odorants that alter the floral odor bouquet which may attract insect pollinators. Floral nectar provides nutrition and habitat for myriad microorganisms [5,6,7,8,9,10] that may alter the composition of nectar [11] and produce odorants [8, 12, 13], thereby modifying the inflorescence odor bouquet [13,14,15] These microbially-derived odorants may contribute to the plant-pollinator signalling system by serving as attractive semiochemicals (message-bearing chemicals) to pollinators [13, 16,17,18]. The overall odor bouquet produced by microbes varies with the composition of the microbe community [2, 21], likely modifying the insects’ behavioural responses
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.