Abstract

Inflammatory and fibrotic responses are accelerated during the reperfusion period, and excessive fibrosis and inflammation contribute to cardiac malfunction. NecroX compounds have been shown to protect the liver and heart from ischemia-reperfusion injury. The aim of this study was to further define the role and mechanism of action of NecroX-5 in regulating infl ammation and fi brosis responses in a model of hypoxia/reoxygenation (HR). We utilized HR-treated rat hearts and lipopolysaccharide (LPS)-treated H9C2 culture cells in the presence or absence of NecroX-5 (10 µmol/L) treatment as experimental models. Addition of NecroX-5 signifi cantly increased decorin (Dcn) expression levels in HR-treated hearts. In contrast, expression of transforming growth factor beta 1 (TGFβ1) and Smad2 phosphorylation (pSmad2) was strongly attenuated in NecroX-5-treated hearts. In addition, signifi cantly increased production of tumor necrosis factor alpha (TNFα), TGFβ1, and pSmad2, and markedly decreased Dcn expression levels, were observed in LPS-stimulated H9C2 cells. Interestingly, NecroX-5 supplementation effectively attenuated the increased expression levels of TNFα, TGFβ1, and pSmad2, as well as the decreased expression of Dcn. Thus, our data demonstrate potential antiinflammatory and anti-fibrotic effects of NecroX-5 against cardiac HR injuries via modulation of the TNFα/Dcn/TGFβ1/Smad2 pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.