Abstract

COVID-19, caused by SARS-CoV-2 infection, results in irreversible or fatal lung injury. We assumed that necroptosis of virus-infected alveolar epithelial cells (AEC) could promote local inflammation and further lung injury in COVID-19. Since CD8+ lymphocytes induced AEC cell death via cytotoxic molecules such as FAS ligands, we examined the involvement of FAS-mediated cell death in COVID-19 patients and murine COVID-19 model. We identified the occurrence of necroptosis and subsequent release of HMGB1 in the admitted patients with COVID-19. In the mouse model of COVID-19, lung inflammation and injury were attenuated in Fas-deficient mice compared to Fas-intact mice. The infection enhanced Type I interferon-inducible genes in both groups, while inflammasome-associated genes were specifically upregulated in Fas-intact mice. The treatment with necroptosis inhibitor, Nec1s, improved survival rate, lung injury, and systemic inflammation. SARS-CoV-2 induced necroptosis causes cytokine induction and lung damage, and its inhibition could be a novel therapeutic strategy for COVID-19.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.