Abstract

The service function chaining paradigm links ordered service functions via network virtualization, in support of applications with severe network constraints. To provide wide-area (federated) virtual network services, a distributed architecture should orchestrate cooperating or competing processes to generate and maintain virtual paths hosting service function chains while, guaranteeing performance and fast asynchronous consensus even in the presence of failures. To this end, we propose a prototype of an architecture for robust service function chain instantiation with convergence and performance guarantees. To instantiate a service chain, our system uses a fully distributed asynchronous consensus mechanism that has bounds on convergence time and leads to a (1 $-\,\,1/ {e}$ )-approximation ratio with respect to the Pareto optimal chain instantiation, even in the presence of (non-byzantine) failures. Moreover, we show that a better optimal chain approximation cannot exist. To establish the practicality of our approach, we evaluate the system performance, policy tradeoffs, and overhead via simulations and through a prototype implementation. We then describe our extensible management object model and compare our asynchronous consensus’s overhead against Raft, a recent decentralized consensus protocol, showing superior performance. We furthermore discuss a new management object model for distributed service function chain instantiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.