Abstract

Abstract Because of thin wall thicknesses and closed bottom ends of the extruded aerosol can, the necking limit analysis needs intensive investigation. The numerical analysis of the necking process of 0.45 mm thickness pure aluminum aerosol can was carried out. The result indicated that the length of the aerosol can wall, which is not fixed by the bottom die and the angle of inclination of necking tools are important factors that affect the development of deformation boundary limits due to plastic instability of local buckling. The fraction of taper angle of tool becomes more series parameter while necking at larger free length and it needs more concentration. Instead, the ratio of necking tool displacement to the total free length to initiate buckling was increased while increasing free length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call